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Introduction to Team Theory



Team theory

Team theory studies decision makers that wish collaborate to
accomplish a common task.
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Team theory

Team theory studies decision makers that wish collaborate to
accomplish a common task.

Salient feature of Teams:

• Multiple decision makers.

• Decentralized information.

• Common objective.
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Team in various applications

• Networked control

• Robotics

• Communication

• Transportation

• Sensor networks

• Smart grids

• Economics

• etc.

2



Team in various applications

• Networked control

• Robotics

• Communication

• Transportation

• Sensor networks

• Smart grids

• Economics

• etc.

Teams are almost everywhere.
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Background of team theory

Static team (Radner 1962, Marschack and Radner 1972)

Dynamic team (Witsenhausen 1971, Witsenhausen 1973)

Specific information structure

• Partially nested (Ho and Chu 1972)

• One-step delayed sharing (Witsenhausen 1971, Yoshikawa 1978)

• n-step delayed sharing (Witsenhausen 1971, Varaiya 1978, Nayyar 2011)

• Common past sharing (Aicardi 1978)

• Periodic sharing (Ooi 1997)

• Belief sharing (Yuksel 2009)

• Partial history sharing (Nayyar 2013)
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Motivation

• Explicit optimal solutions typically for 2-3 agents:
big gap between theory and application.

• When the model is not known completely:
no optimal result even for 2-3 agents.
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Motivation

• Explicit optimal solutions typically for 2-3 agents:
big gap between theory and application.

• When the model is not known completely:
no optimal result even for 2-3 agents.

• Mean Field Teams.

• Reinforcement Learning w.t.
partial history sharing.
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Mean Field Teams



Partially exchangeable agents

Smart grids Swarm robotics

Social networks
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Notation

• N : set of heterogeneous agents

• K : set of sub-populations

For entire population:

• xt : joint state at time t

• ut : joint action at time t

For agent i of sub-population k ∈ K:

• N k : entire sub-population of type k ∈ K
• x i

t ∈ X k : state of agent i at time t

• ui
t ∈ U k : action of agent i at time t
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Partially exchangeable agents

Definition (Exchangeable agents)

A pair (i, j) of agents is exchangeable if:

1) For any t , and any x, u, and w,

σi,j
(
ft (x, u,w)

)
= ft (σi,jx, σi,ju, σi,jw),

2) For any t , and any x and u,

ct (x, u) = ct (σi,jx, σi,ju),
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A pair (i, j) of agents is exchangeable if:

1) For any t , and any x, u, and w,

σi,j
(
ft (x, u,w)

)
= ft (σi,jx, σi,ju, σi,jw),

2) For any t , and any x and u,

ct (x, u) = ct (σi,jx, σi,ju),

Exchangeable agents 6⇐⇒ Exchangeable initial states & noises
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Partially exchangeable agents

Definition (Exchangeable agents)

A pair (i, j) of agents is exchangeable if:

1) For any t , and any x, u, and w,

σi,j
(
ft (x, u,w)

)
= ft (σi,jx, σi,ju, σi,jw),

2) For any t , and any x and u,

ct (x, u) = ct (σi,jx, σi,ju),

Partially exchangeable agents ≡ Mean-field coupled agents
(Irrespective of information structure)
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Mean field models: controlled Markov chain

Suppose the dynamics xt+1 = ft (xt , ut ,wt ).

The per-step cost is ct (xt , ut ).

Proposition 2.2
There exist functions {{f k

t }k∈K, `t} such that for agent i ∈ N k

x i
t+1 = f k

t (x i
t , u

i
t , ξt ,w

i
t ),

and the per-step cost at time t , may be written as

`t (ξt ).

mt = vec(m1
t , . . . ,m

K
t ), ξt = vec(ξ1

t , . . . , ξ
K
t ),

mk
t =

1
|N k |

∑
i∈N k

δx i
t
, ξk

t =
1
|N k |

∑
i∈N k

δx i
t ,u

i
t
.
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Mean-field models: linear quadratic

Suppose the dynamics are linear, i.e., xt+1 = At xt + Bt ut + wt .

The per-step cost is quadratic, i.e., ct (xt , ut ) = xt
ᵀQt xt + ut

ᵀRt ut .

Proposition 2.1
There exist matrices {Ak

t ,B
k
t ,D

k
t ,E

k
t ,Q

k
t ,R

k
t }k∈K and Px

t and Pu
t such that

x i
t+1 = Ak

t x i
t + Bk

t ui
t + Dk

t x̄t + Ek
t ūt + w i

t .

and the per-step cost at time t , may be written as

x̄ᵀ
t Px

t x̄t + ūᵀ
t Pu

t ūt +
∑
k∈K

∑
i∈N k

1
|N k |

[
(x i

t )
ᵀ

Qk
t x i

t + (ui
t )
ᵀ

Rk
t ui

t

]
.

x̄t = vec(x̄1
t , . . . , x̄

K
t ), ūt = vec(ū1

t , . . . , ū
K
t ),

x̄k
t =

1
|N k |

∑
i∈N k

x i
t , ūk

t =
1
|N k |

∑
i∈N k

ui
t . 9



Mean-field teams: problem formulation

Controlled Markov Chain Linear Quadratic

• Dynamics: x i
t+1 = f k

t (x i
t , u

i
t , ξt ,w

i
t )

• Per-step cost: `t (ξt )

• Information structure: ui
t = g i

t (x i
t ,m1:t )

• Objective:
J∗ = ming

(
Eg
[∑T

t=1 `t (ξt )
])

• x i
t+1 = Ak

t x i
t + Bk

t ui
t + Dk

t x̄t + Ek
t ūt + w i

t

• `t (xt , ut ) = x̄ᵀ
t Px

t x̄t + ūᵀ
t Pu

t ūt +∑K
k=1

∑
i∈N k

1
|N k |

[
(x i

t )
ᵀ

Qk
t x i

t + (ui
t )
ᵀ

Rk
t ui

t

]
.

• ui
t = g i

t (x i
t , x̄1:t )

• J∗ = infg

(
Eg
[∑T

t=1 `t (xt , ut )
])
.
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Mean-field teams: key assumptions

Controlled Markov Chain Linear Quadratic

A 4.1 The control laws are exchange-
able i.e. g i

t = g j
t for any i, j ∈ N k .

It is a standard assumption in
large scale systems for reasons:
simplicity, fairness, & robustness.

Not needed.
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Mean-field teams: key assumptions

Controlled Markov Chain Linear Quadratic

A 4.1 The control laws are exchange-
able i.e. g i

t = g j
t for any i, j ∈ N k .

It is a standard assumption in
large scale systems for reasons:
simplicity, fairness, & robustness.

Not needed.

No assumptions on the probability distributions across agents.

• Gaussian or non-Gaussian,

• Independent or highly correlated,

• Exchangeable or non-exchangeable.
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Mean-field teams: main challenges

Controlled Markov Chain Linear Quadratic

• Coupling in dynamic and cost with
non-classical information struc-
ture. This belongs to NEXP.

• Designer’s approach, impractical
dynamic program.

• Common information approach,
state space of dynamic program
increases exponentially in num-
ber of agents and time, i.e.,
P(x1

t , . . . , x
N
t | m1:t ).
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Witsenhausen’s counterexample is still an open problem after 48 years!

Lipsa and matrins, Optimal memoryless control in Gaussian noise: A simple
counterexample, 2008.

Yuksel and Tatikonda, A counterexample in distributed optimal sensing, 2009.

Whittle and Rudge, The optimal linear solution of a symmetric team control
problem, 1974.
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Controlled Markov Chain Linear Quadratic

• Coupling in dynamic and cost with
non-classical information struc-
ture. This belongs to NEXP.

• Designer’s approach, impractical
dynamic program.

• Common information approach,
state space of dynamic program
increases exponentially in num-
ber of agents and time, i.e.,
P(x1

t , . . . , x
N
t | m1:t ).

• LQG with non-classical informa-
tion structure is difficult.

• Linear strategies are optimal only
for Gaussian and partially nested.

• The mean field sharing is not par-
tially nested and the noises are al-
lowed to be non-Gaussian.

There is no existing approach to solve mean-field teams.
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Mean-field teams: main theorems

Theorem 4.1
Define recursively value functions:

VT+1(m) = 0, m ∈Mn,

and for t = T , . . . , 1, for m ∈Mn,

Vt (m) = min
γ

E

[
`t (φ(mt ,γ t )) + Vt+1(mt+1) | mt = m,γ t = γ

]
,

where γ = (γ1, . . . , γK ), γk : X k → U k , and

φ(m,γ)(x, u) = m(x)
K∏

k=1

1
(
uk =γk (xk )

)
, x∈

K∏
k=1

X k, u∈
K∏

k=1

U k, xk ∈X k, uk ∈U k

Let ψ∗t denote any argmin of the right hand side. Then, optimal solution is

g∗,kt (m, x) := ψ∗,kt (m)(x), m ∈Mn, x ∈ X k , k ∈ K.
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Mean-field teams: main theorems

Theorem 3.1
The optimal strategy is unique, identical across sub-populations, and is linear
in local state and the mean-field of the system. In particular,

ui
t = L̆k

t (x i
t − x̄k

t ) + L̄k
t x̄t , i ∈ N k , k ∈ K,

where the above gains are obtained by the solution of K +1 Riccati equations:
one for computing each L̆k

t , k ∈ K, and one for L̄t := vec(L̄1
t , . . . , L̄

K
t ). Let

M̆k
1:T and M̄1:T denote the solution of the above Riccati equations and

Σ̆k
t :=

∑
i∈N k var(w i

t −w̄k
t )

|N k |
, Σ̄t := var(w̄t), Ξ̆

k :=

∑
i∈N k var(x i

1− x̄k
1 )

|N k |
, Ξ̄ := var(̄x1)

Then, the optimal cost is given by

J∗ =
∑
k∈K

Tr(Ξ̆k M̆k
1 )+Tr(Ξ̄M̄1)+

T−1∑
t=1

[∑
k∈K

Tr(Σ̆k
t M̆k

t+1)+Tr(Σ̄t M̄t+1)

]
.
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1 )

|N k |
, Ξ̄ := var(̄x1)

Then, the optimal cost is given by

J∗ =
∑
k∈K

Tr(Ξ̆k M̆k
1 )+Tr(Ξ̄M̄1)+

T−1∑
t=1

[∑
k∈K

Tr(Σ̆k
t M̆k

t+1)+Tr(Σ̄t M̄t+1)

]
.

For agent i ∈ N k in sub-population k ∈ K = {1, . . . ,K},

ui
t = g∗,kt (mt , x

i
t ), ui

t = L̆k
t (x i

t − x̄k
t ) + L̄k

t x̄t .
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Salient features

Controlled Markov Chain Linear Quadratic

• The solution complexity is
polynomial in number of agents
(rather than exponential) and
linear in time (rather than
exponential.)

• No need to share anything
beyond mean field.

• The solution complexity depends
on the number of
sub-populations, i.e., K but not
on the number of agents in
each sub-population, i.e., N k .

• Each agent needs to solve only
two Riccati equations (distributed
computation).
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Mean-field teams: generalizations

Controlled Markov Chain Linear Quadratic

• Arbitrarily coupled cost

• Infinite horizon

• Noisy observation

• Major-minor

• Randomized strategies

• Weighted mean field

• Infinite horizon

• Partial mean field sharing

• Major-minor

• Tracking problem
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Mean-field teams: generalizations

Controlled Markov Chain Linear Quadratic

• Infinite horizon

• Noisy observation

• Major-minor

• Randomized strategies

• Infinite horizon

• Major-minor

• Tracking problem

Within the same sub-population, each agent is allowed to have differ-
ent tracking reference and weights:

ui
t = L̆k

t (x i
t − λi x̄k,λ

t ) + λi L̄k
t x̄λt + F̆ k

t v i,λi

t + λi F̄ k
t v̄t

λ
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Mean-field teams: generalizations

Controlled Markov Chain Linear Quadratic

• Infinite horizon

• Noisy observation

• Major-minor

• Randomized strategies

• Infinite horizon

• Major-minor

• Tracking problem

When mean field of only sub-populations S ∈ K are observed:

ui
t = L̆k

t (x i
t − zk

t ) + L̄k
t zt ,

where
zk

t+1 =

{
x̄k

t+1, k ∈ S,
Ak

t zk
t + (Bk

t L̄k
t + Dk

t + Ek
t L̄t )zt , k ∈ Sc.

The approximation error

∆J = Tr(X̃1M̃1) +
T−1∑
t=1

Tr(W̃t M̃t+1),

where M̃1:T is the solution of a Lyapunov equation. It is bounded as

∆J ∈ O
(

T
n

)
.
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Mean-field teams: numerical examples

Controlled Markov Chain Linear Quadratic

Service-

Provider
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Numerical example 1: demand response

• x i
t ∈ X = {OFF ,ON}, mt = 1

n

∑n
i=1 1(x i

t = OFF)

• Dynamics: P(x i
t+1|x i

t , u
i
t ) =: [P(ui

t )]x i
t x

i
t+1

• Actions: ui
t ∈ U = {FREE ,OFF ,ON}, Cost of action: C(ui

t )

• Objective: ming Eg
[∑∞

t=1 β
t
(

1
n

∑n
i=1 C(ui

t ) + D(mt‖ζt )
)]
.
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Numerical example 1: demand response
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Reinforcement Learning with

Partial History Sharing



Reinforcement learning with partial history sharing

Team

Mean Field Teams
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Reinforcement learning with partial history sharing

Team

Mean Field Teams

Partial History Sharing

Mean Field Teams
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Reinforcement learning in general team

Environment

xt+1 = f (xt ,u1
t , . . . ,u

n
t ,w

s
t )

cost: `(xt ,u1
t , . . . ,u

n
t )

Agent 1

Agent 2

Agent n

u1
t

u2
t

un
t

ObservationsI1
t

Observations

I2
t

Observations

In
t Instantaneous cost

`t

State: xt ∈ X . Observation: y i
t = h(xt , u1

t−1, . . . , u
n
t−1,w

i,o
t ).

Control law: ui
t = g i

t (I i
t ). Information: I i

t ⊆ {y1
1:t , . . . , y

n
1:t , u

1
1:t−1, . . . , u

n
1:t−1}.

System cost: Given β ∈ (0, 1), J(g) = Eg
[∑∞

t=1 β
t−1`(xt , u1

t , . . . , u
n
t )
]
.
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Reinforcement learning in general team

Environment

xt+1 = f (xt ,u1
t , . . . ,u

n
t ,w

s
t )

cost: `(xt ,u1
t , . . . ,u

n
t )

Agent 1

Agent 2

Agent n

u1
t

u2
t

un
t

ObservationsI1
t

Observations

I2
t

Observations

In
t Instantaneous cost

`t

Suppose the system dynamics (f , h), cost structure `, and probability
mass functions are not completely known.

Objective: Given ε> 0, find strategy g∗ε such that

J(g∗ε ) ≤ J∗ + ε.
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Reinforcement learning with Partial History Sharing (PHS)

Definition (Partial History Sharing, Nayyer et al. 2013)

Split the information at each agent into two parts:

• Common information: ct =
⋂n

i=1 I i
t i.e. shared between all agents.

• Local information: mi
t = I i

t\ct that is the local information of agent i .

Define zt := ct+1\ct as common observation, hence ct+1 = z1:t . Then,

a) The update of local information

mi
t+1 ⊆ {mi

t , u
i
t , y

i
t+1}\zt , i ∈ {1, . . . , n}.

b) For every agent i , |mi
t | and |zt | are uniformly bounded in time t .

PHS encompasses: delayed sharing, mean-field sharing, periodic shar-
ing, control sharing, etc.
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Reinforcement learning in team: main challenges

Given centralized MDP, there are two ways to learn the optimal solution:

• Indirect: supervised learning and dynamic program.

• Direct (Reinforcement Learning): Barto, Sutton, Watkins, Dayan, Singh,
etc. (active since 80’s).
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• Direct (Reinforcement Learning): Barto, Sutton, Watkins, Dayan, Singh,
etc. (active since 80’s).

Most of existing RL methods are developed for finite state-action MDPs.
However, decentralized systems are not MDP in general.

The indirect method may not be feasible due to the incomplete information
i.e. dynamics and cost may not be fully identified.

[Nayyer et al. 2013] identifies a dynamic program for PHS; however,

The state space is an infinite set.

The state space depends on the model.

There is no RL algorithm for POMDP that guarantees optimality.
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Reinforcement learning in team: main challenges

Given centralized MDP, there are two ways to learn the optimal solution:

• Indirect: supervised learning and dynamic program.

• Direct (Reinforcement Learning): Barto, Sutton, Watkins, Dayan, Singh,
etc. (active since 80’s).

No existing approach to solve decentralized reinforcement learning.
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Pre-learning stage

STEP 1: Common Information Approach

Define partial function γ i
t :Mi → U i :

γ i
t := g i

t (z1:t−1, ·) s.t. ui
t = γ i

t (mi
t ).

Let ψ denote the coordinator’s strategy:

(γ1
t , . . . , γ

n
t ) = ψt (z1:t−1).

Virtual coordinator observes z1:t−1 and prescribes γ t := (γ1
t , . . . , γ

n
t ) ∈ G.

An equivalent centralized POMDP [Nayyer et al., 2013]
A dynamic program is identified to characterize the optimal strategy based
on the information state π.

V (π) = min
γ∈G

E
[
`(xt , ut ) + V (πt+1)|πt = π,γ t = γ

]
.

LetR denote the reachable set of the information state π.
24



Pre-learning stage

STEP 2: An Approximate POMDP RL Algorithm

Definition (Incrementally Expanding Representation)

Let {SN}∞N=1 be a sequence of finite sets such that S1 ( S2 ( . . . ( SN (
. . .. Let S = limN→∞ SN be the countable union of above finite sets. The
tuple 〈{SN}∞N=1,B, f̃ 〉 is called an Incrementally Expanding Representation, if

Incremental Expansion: For any γ ∈ G, z ∈ Z, and s ∈ SN ,

f̃ (s,γ, z) ∈ SN+1.

Consistency: For any (γ1:t−1, z1:t−1), let πt and st be the corresponding
states at time t . Then,

πt = B(st ).
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Pre-learning stage

STEP 2: An Approximate POMDP RL Algorithm

Lemma

Every decentralized systems with PHS has at least one IER such that S
and f̃ do not depend on unknowns .

• Construct countable-state MDP ∆ with state space S, action space G,
dynamics f̃ , and cost ˜̀(B(st ),γ t ) := E[`(xt , u1

t , . . . , u
n
t )|πt ,γ t ].

• Construct an augmented type approximation sequence {∆N}∞N=1 of ∆,
with state space SN , action space G, dynamics f̃ , and cost ˜̀(B(st ),γ t ).

• Apply a finite-state RL algorithm T (such as TD(λ) and Q-learning) to
learn optimal strategy of ∆N . We assume T converges to optimal
strategy of ∆N .
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A Block Diagram
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Proposed decentralized RL algorithm

(1) Given ε > 0, choose N such that 2βN

1−β (`max − `min) ≤ ε. Then, construct
∆N ; particularly, state space SN and dynamics f̃ .

(2) At iteration k , ζ chooses prescriptions γk = (γ1
k , . . . , γ

n
k ). (Agents have

access to a common random generator to explore consistently). Agent i
takes action ui

k based on prescription γ i
k and local information mi

k :

ui
k = γ i

k (mi
k ),∀i.

(3) Based on taken actions, system incurs cost `k , evolves, and generates
common observation zk that is observable to every agent. Agents con-
sistently compute next state as follows

sk+1 = f̃ (sk , γk , zk ) ∈ SN .

(4) T learns (updates) the coordinated strategy according to observed cost
`k by performing prescriptions γk at state sk and transition to state sk+1.

(5) k ← k + 1, and go to step 2 until termination.
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Proposed decentralized RL algorithm

(1) Given ε > 0, choose N such that 2βN

1−β (`max − `min) ≤ ε. Then, construct
∆N ; particularly, state space SN and dynamics f̃ .

(2) At iteration k , ζ chooses prescriptions γk = (γ1
k , . . . , γ

n
k ). (Agents have

access to a common random generator to explore consistently). Agent i
takes action ui

k based on prescription γ i
k and local information mi

k :

ui
k = γ i

k (mi
k ),∀i.

(3) Based on taken actions, system incurs cost `k , evolves, and generates
common observation zk that is observable to every agent. Agents con-
sistently compute next state as follows

sk+1 = f̃ (sk , γk , zk ) ∈ SN .

(4) T learns (updates) the coordinated strategy according to observed cost
`k by performing prescriptions γk at state sk and transition to state sk+1.

(5) k ← k + 1, and go to step 2 until termination.

The structure of the learned strategy:

ui
t = g i

t (st ,m
i
t ), i ∈ (1, . . . , n),

where st is the internal state that changes every time.
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Learning stage: main theorem

Theorem 6.3
Let J∗ be the optimal performance of the original decentralized system and J̃
be the performance under the learned strategy. Then,

J̃ − J∗ ≤ εN ,

where εN = 2βτN

1−β (`max − `min) ≤ 2βN

1−β (`max − `min) and τN is a model depen-
dent parameter that τN ≥ N.

29



Numerical example 2: multi Access Broadcast Channel (MABC)

– x i
t ∈ {0, 1} with independent arrival probabil-

ity pi , i = 1, 2.

– I i
t = (x i

t , u
1
1:t−1, u

2
1:t−1).

– ui
t ≤ x i

t ∈ {0, 1}.

– In case of collision, packets remain in buffers.

– Objective: maximize the throughput.

• State of other agent is unknown.

(decentralized information)

• Arrival probabilities are unknown.

(incomplete model)
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Future Work



Future work

• Game theory

• Markov chain

• Reinforcement learning: Specific teams such as mean-field teams.

• Mean-field teams and consensus algorithms

• Various approximations in mean-field teams: Information & model.

• New model of mean-field teams

• Various applications: Smart grids, communications, economics,
robotics, social networks, etc.
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Thank you.
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Contributions



Main contributions: Mean Field Teams

• Introduce partially exchangeable agents and mean-field teams.

• Allow agents to be coupled in dynamics and cost under mild assump-
tions.

• Mean field sharing is non-classical. (difficult problems)

• We use novel approaches to find the global optimal solution.

• Solution approach works for arbitrary # of agents. (not necessarily large)

• Mean field can be computed and communicated easily or by local inter-
actions using consensus algorithms.

• In large sub-populations, mean-field is predictable. Also, mean-field
teams are robust to node failure.

• Different generalizations.
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Main contributions: Mean Field Teams

• Introduce partially exchangeable agents and mean-field teams.

• Allow agents to be coupled in dynamics and cost under mild assump-
tions.

• Mean field sharing is non-classical. (difficult problems)

• We use novel approaches to find the global optimal solution.

• Solution approach works for arbitrary # of agents. (not necessarily large)

• Mean field can be computed and communicated easily or by local inter-
actions using consensus algorithms.

• In large sub-populations, mean-field is predictable. Also, mean-field
teams are robust to node failure.

• Different generalizations.

Salient features of mean-field teams:

1. Controlled Markov chain: solution complexity is polynomial (rather than expo-
nential) in # of agents and linear (rather than exponential) in time.

2. Linear quadratic:

• The optimal solution is linear.
• The solution complexity is independent of N and it depends only K .

• No need to share anything beyond mean field.

• Each agent solves only two Riccati equations (distributed computation).

3. When population is infinite, mean-field is deterministic and computable.
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Main contributions: Mean Field Teams

• Introduce partially exchangeable agents and mean-field teams.

• Allow agents to be coupled in dynamics and cost under mild assump-
tions.

• Mean field sharing is non-classical. (difficult problems)

• We use novel approaches to find the global optimal solution.

• Solution approach works for arbitrary # of agents. (not necessarily large)

• Mean field can be computed and communicated easily or by local inter-
actions using consensus algorithms.

• In large sub-populations, mean-field is predictable. Also, mean-field
teams are robust to node failure.

• Different generalizations.

• Arbitrarily coupled cost

• Infinite horizon

• Noisy observation

• Major-minor

• Randomized strategies

• Weighted mean field

• Infinite horizon

• Partial mean-field sharing

• Major-minor

• Tracking problem

33



Main contributions: Reinforcement Learning with PHS

• There is no existing RL in team that guarantees optimality .

• Introduce a novel decentralized RL for partial history sharing that guar-
antees ε−optimal solution.

• Use common information approach and our proposed approach to
design the learning space.

• Introduce the notion of Incrementally Expanding Representation.

• The proposed approach is also novel in centralized POMDP.

• Develop decentralized Q-learning for two-user MABC.
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Main contributions: Reinforcement Learning with PHS

• There is no existing RL in team that guarantees optimality .

• Introduce a novel decentralized RL for partial history sharing that guar-
antees ε−optimal solution.

• Use common information approach and our proposed approach to
design the learning space.

• Introduce the notion of Incrementally Expanding Representation.

• The proposed approach is also novel in centralized POMDP.

• Develop decentralized Q-learning for two-user MABC.

Three features of designed learning space SN :

• It is implementable by every agent based on common knowledge.

• It takes into account of the model and cost (not a prefixed space).

• It adapts to the exiting powerful finite state-action RL algorithms.

34



Main contributions: Reinforcement Learning with PHS

• There is no existing RL in team that guarantees optimality .

• Introduce a novel decentralized RL for partial history sharing that guar-
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Reinforcement Learning:

Multi-Access Broadcast

Channel



Numerical example 2: MABC
 

 

 

 Reachable Set Countable State Space 
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Both users transmit Only user 1 transmits Only user 2 transmits

36



Mean-field team: temperature

control



Numerical example 3: temperature control
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