

New Concepts in Team Theory: Mean Field Teams & Reinforcement Learning

JALAL ARABNEYDI

PhD Oral Defense: December 8, 2016 Electrical and Computer Engineering department, McGill University

Introduction to Team Theory

Team theory studies decision makers that wish collaborate to accomplish a common task.

Salient feature of Teams:

Team theo accomplish

- Multiple decision makers.
- Decentralized information.
- Common objective.

laborate to

Team in various applications

- Networked control
- Robotics
- Communication
- Transportation
- Sensor networks
- Smart grids
- Economics
- etc.

Team in various applications

- Networked control
- Robotics
- Communicatio
- Transportation
- Sensor network
- Smart grids
- Economics
- etc.

Static team (Radner 1962, Marschack and Radner 1972)

Dynamic team (Witsenhausen 1971, Witsenhausen 1973)

Specific information structure

- Partially nested (Ho and Chu 1972)
- One-step delayed sharing (Witsenhausen 1971, Yoshikawa 1978)
- n-step delayed sharing (Witsenhausen 1971, Varaiya 1978, Nayyar 2011)
- Common past sharing (Aicardi 1978)
- Periodic sharing (Ooi 1997)
- Belief sharing (Yuksel 2009)
- Partial history sharing (Nayyar 2013)

• Explicit optimal solutions typically for 2-3 agents: big gap between theory and application.

• When the model is not known completely: no optimal result even for 2-3 agents.

• Explicit optimal solutions typically for 2-3 agents: • Mean Field Teams. big gap between theory and application.

• When the model is not known completely: no optimal result even for 2-3 agents. • Reinforcement Learning w.t. partial history sharing.

Mean Field Teams

Partially exchangeable agents

Smart grids

Swarm robotics

Social networks

Notation

- $\ensuremath{\mathcal{N}}$: set of heterogeneous agents
- \mathcal{K} : set of sub-populations

For entire population:

- **x**_t : joint state at time t
- **u**_t : joint action at time t

For agent *i* of sub-population $k \in \mathcal{K}$:

- \mathcal{N}^k : entire sub-population of type $k \in \mathcal{K}$
- $x_t^i \in \mathcal{X}^k$: state of agent *i* at time *t*
- $u_t^i \in \mathcal{U}^k$: action of agent *i* at time *t*

Notation

- $\ensuremath{\mathcal{N}}$: set of heterogeneous agents
- \mathcal{K} : set of sub-populations

For entire population:

- **x**_t : joint state at time t
- **u**_t : joint action at time t

For agent *i* of sub-population $k \in \mathcal{K}$:

- \mathcal{N}^k : entire sub-population of type $k \in \mathcal{K}$
- $x_t^i \in \mathcal{X}^k$: state of agent *i* at time *t*
- $u_t^i \in \mathcal{U}^k$: action of agent *i* at time *t*

Definition (Exchangeable agents)

A pair (i, j) of agents is exchangeable if:

1) For any *t*, and any **x**, **u**, and **w**,

$$\sigma_{i,j}(f_t(\mathbf{x},\mathbf{u},\mathbf{w})) = f_t(\sigma_{i,j}\mathbf{x},\sigma_{i,j}\mathbf{u},\sigma_{i,j}\mathbf{w}),$$

2) For any *t*, and any **x** and **u**,

$$c_t(\mathbf{x},\mathbf{u}) = c_t(\sigma_{i,j}\mathbf{x},\sigma_{i,j}\mathbf{u}),$$

Definition (Exchangeable agents)

A pair (i, j) of agents is exchangeable if:

X

Exchangeable agents \iff Exchangeable initial states & noises

$$c_t(\mathbf{x},\mathbf{u}) = c_t(\sigma_{i,j}\mathbf{x},\sigma_{i,j}\mathbf{u}),$$

Definition (Exchangeable agents)

pair (i, j) of agents is exchangeable if:

Partially exchangeable agents \equiv Mean-field coupled agents (Irrespective of information structure)

 $c_t(\mathbf{x},\mathbf{u}) = c_t(\sigma_{i,j}\mathbf{x},\sigma_{i,j}\mathbf{u}),$

Mean field models: controlled Markov chain

Suppose the dynamics

$$\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t).$$

The per-step cost is $c_t(\mathbf{x}_t, \mathbf{u}_t)$.

Proposition 2.2

There exist functions $\{\{f_t^k\}_{k\in\mathcal{K}}, \ell_t\}$ such that for agent $i \in \mathcal{N}^k$

$$x_{t+1}^{i} = f_{t}^{k}(x_{t}^{i}, u_{t}^{i}, \boldsymbol{\xi}_{t}, w_{t}^{i}),$$

 $\ell_t(\boldsymbol{\xi}_t).$

and the per-step cost at time t, may be written as

$$\mathbf{m}_{t} = \operatorname{vec}(m_{t}^{1}, \dots, m_{t}^{K}), \qquad \qquad \mathbf{\xi}_{t} = \operatorname{vec}(\xi_{t}^{1}, \dots, \xi_{t}^{K}), \\ m_{t}^{k} = \frac{1}{|\mathcal{N}^{k}|} \sum_{i \in \mathcal{N}^{k}} \delta_{x_{t}^{i}}, \qquad \qquad \xi_{t}^{k} = \frac{1}{|\mathcal{N}^{k}|} \sum_{i \in \mathcal{N}^{k}} \delta_{x_{t}^{i}, u_{t}^{i}}.$$

Mean-field models: linear quadratic

Suppose the dynamics are linear, i.e., $\mathbf{x}_{t+1} = A_t \mathbf{x}_t + B_t \mathbf{u}_t + \mathbf{w}_t$.

The per-step cost is quadratic, i.e.,

 $\mathbf{x}_{t+1} = A_t \mathbf{x}_t + B_t \mathbf{u}_t + \mathbf{w}_t.$ $c_t(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^{\mathsf{T}} Q_t \mathbf{x}_t + \mathbf{u}_t^{\mathsf{T}} R_t \mathbf{u}_t.$

Proposition 2.1

There exist matrices $\{A_t^k, B_t^k, D_t^k, E_t^k, Q_t^k, R_t^k\}_{k \in \mathcal{K}}$ and P_t^x and P_t^u such that

$$x_{t+1}^i = A_t^k x_t^i + B_t^k u_t^i + D_t^k \overline{\mathbf{x}}_t + E_t^k \overline{\mathbf{u}}_t + w_t^i.$$

and the per-step cost at time t, may be written as

$$\bar{\mathbf{x}}_{t}^{\mathsf{T}} P_{t}^{\mathsf{x}} \bar{\mathbf{x}}_{t} + \bar{\mathbf{u}}_{t}^{\mathsf{T}} P_{t}^{u} \bar{\mathbf{u}}_{t} + \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{N}^{k}} \frac{1}{|\mathcal{N}^{k}|} \left[\left(x_{t}^{i} \right)^{\mathsf{T}} Q_{t}^{k} x_{t}^{i} + \left(u_{t}^{i} \right)^{\mathsf{T}} R_{t}^{k} u_{t}^{i} \right].$$

$$\begin{split} \mathbf{\bar{x}}_t &= \operatorname{vec}(\bar{x}_t^1, \dots, \bar{x}_t^K), \\ \bar{x}_t^k &= \frac{1}{|\mathcal{N}^k|} \sum_{i \in \mathcal{N}^k} x_t^i, \end{split}$$

$$\mathbf{\bar{u}}_t = \operatorname{vec}(\bar{u}_t^1, \dots, \bar{u}_t^K),$$
$$\bar{u}_t^k = \frac{1}{|\mathcal{N}^k|} \sum_{i \in \mathcal{N}^k} u_t^i.$$

Mean-field teams: problem formulation

Controlled Markov Chain

• Dynamics: $x_{t+1}^i = f_t^k(x_t^i, u_t^i, \boldsymbol{\xi}_t, w_t^i)$

• Per-step cost: $\ell_t(\boldsymbol{\xi}_t)$

• Information structure: $u_t^i = g_t^i(x_t^i, \mathbf{m}_{1:t})$

• Objective:

J

$$\mathbf{F}^{*} = \min_{\mathbf{g}} \left(\mathbb{E}^{\mathbf{g}} \left[\sum_{t=1}^{T} \ell_{t}(\boldsymbol{\xi}_{t}) \right] \right)$$

Linear Quadratic

• $x_{t+1}^i = A_t^k x_t^i + B_t^k u_t^i + D_t^k \overline{\mathbf{x}}_t + E_t^k \overline{\mathbf{u}}_t + w$

•
$$\ell_t(\mathbf{x}_t, \mathbf{u}_t) = \bar{\mathbf{x}}_t^{\mathsf{T}} P_t^x \bar{\mathbf{x}}_t + \bar{\mathbf{u}}_t^{\mathsf{T}} P_t^u \bar{\mathbf{u}}_t + \sum_{k=1}^{K} \sum_{i \in \mathcal{N}^k} \frac{1}{|\mathcal{N}^k|} \left[(x_t^i)^{\mathsf{T}} Q_t^k x_t^i + (u_t^i)^{\mathsf{T}} R_t^k u_t^i \right]$$

• $u_t^i = g_t^i(x_t^i, \bar{\mathbf{x}}_{1:t})$

•
$$J^* = \inf_{\mathbf{g}} \left(\mathbb{E}^{\mathbf{g}} \left[\sum_{t=1}^T \ell_t(\mathbf{x}_t, \mathbf{u}_t) \right] \right).$$

Mean-field teams: key assumptions

Controlled Markov Chain

A 4.1 The control laws are exchangeable i.e. $g_t^i = g_t^j$ for any $i, j \in \mathcal{N}^k$.

> It is a standard assumption in large scale systems for reasons: simplicity, fairness, & robustness.

Linear Quadratic

Not needed.

Controlled Markov Chain

Linear Quadratic

No assumptions on the probability distributions across agents.

- Gaussian or non-Gaussian,
- Independent or highly correlated,
- Exchangeable or non-exchangeable.

large scale systems for reasons: simplicity, fairness, & robustness.

Controlled Markov Chain

- Coupling in dynamic and cost with non-classical information structure. This belongs to NEXP.
- Designer's approach, impractical dynamic program.
- Common information approach, state space of dynamic program increases exponentially in number of agents and time, i.e., $\mathbb{P}(x_t^1, \dots, x_t^N \mid \mathbf{m}_{1:t}).$

Linear Quadratic

Controlled Markov Chain

- Coupling in dynamic and cost with non-classical information structure. This belongs to NEXP.
- Designer's approach, impractical dynamic program.
- Common information approach, state space of dynamic program increases exponentially in number of agents and time, i.e., $\mathbb{P}(x_t^1, \dots, x_t^N | \mathbf{m}_{1:t}).$

Linear Quadratic

• LQG with non-classical information structure is difficult.

- Linear strategies are optimal only for Gaussian and partially nested.
- The mean field sharing is not partially nested and the noises are allowed to be non-Gaussian.

Controlled Markov Chain

Linear Quadratic

Witsenhausen's counterexample is still an open problem after 48 years!

- Designer's approach, impractical dynamic program.
- Common information approach, state space of dynamic program increases exponentially in number of agents and time, i.e., $\mathbb{P}(x_t^1, \ldots, x_t^N \mid \mathbf{m}_{1:t}).$

- Linear strategies are optimal only for Gaussian and partially nested.
- The mean field sharing is not partially nested and the noises are allowed to be non-Gaussian.

Controlled Markov Chain

Linear Quadratic

Witsenhausen's counterexample is still an open problem after 48 years!

Lipsa and matrins, Optimal memoryless control in Gaussian noise: A simple counterexample, 2008.

- Common information approach, state space of dynamic program increases exponentially in number of agents and time, i.e., $\mathbb{P}(x_t^1, \dots, x_t^N \mid \mathbf{m}_{1:t}).$
- The mean field sharing is not partially nested and the noises are allowed to be non-Gaussian.

Mean-field teams: main challenges	
Controlled Markov Chain	Linear Quadratic
Witsenhausen's counterexample is still an open problem after 48 years!	
Lipsa and matrins, Optimal memoryless control in Gaussian noise: A simple counterexample, 2008.	
Yuksel and Tatikonda, A counterexample in distributed optimal sensing, 2009.	
$\mathbb{P}(x_t^1,\ldots,x_t^N \mid \mathbf{m}_{1:t}).$	10

Controlled Markov Chain

- Coupling in dynamic and cost with non-classical information structure. This belongs to NEXP.
- Designer's approach, impractical dynamic program.
- Common information approach, state space of dynamic program increases exponentially in number of agents and time, i.e., $\mathbb{P}(x_t^1, \dots, x_t^N | \mathbf{m}_{1:t}).$

Linear Quadratic

• LQG with non-classical information structure is difficult.

- Linear strategies are optimal only for Gaussian and partially nested.
- The mean field sharing is not partially nested and the noises are allowed to be non-Gaussian.

Controlled Markov Chain

 Coupling in dynamic and cost with non-classical information structure. This belongs to NEXP.

Linear Quadratic

 LQG with non-classical information structure is difficult.

There is no existing approach to solve mean-field teams.

only ted.

state space of dynamic program increases exponentially in number of agents and time, i.e., $\mathbb{P}(x_t^1, \ldots, x_t^N | \mathbf{m}_{1:t})$.

tially nested and the noises are allowed to be non-Gaussian.

- memeanniero sinari-onis notipar-

Mean-field teams: main theorems

Theorem 4.1

Define recursively value functions:

$$V_{T+1}(\mathbf{m}) = 0, \quad \mathbf{m} \in \mathcal{M}_n,$$

and for $t = T, \ldots, 1$, for $\mathbf{m} \in \mathcal{M}_n$,

 $V_t(\mathbf{m}) = \min_{\gamma} \mathbb{E} \bigg[\ell_t \left(\phi(\mathbf{m}_t, \gamma_t) \right) + V_{t+1}(\mathbf{m}_{t+1}) \mid \mathbf{m}_t = \mathbf{m}, \gamma_t = \gamma \bigg],$

where $\boldsymbol{\gamma} = (\gamma^1, \dots, \gamma^k), \gamma^k: \mathcal{X}^k o \mathcal{U}^k,$ and

$$\phi(\mathbf{m},\boldsymbol{\gamma})(\mathbf{x},\mathbf{u}) = \mathbf{m}(\mathbf{x}) \prod_{k=1}^{K} \mathbb{1}\left(u^{k} = \gamma^{k}(x^{k})\right), \mathbf{x} \in \prod_{k=1}^{K} \mathcal{X}^{k}, \mathbf{u} \in \prod_{k=1}^{K} \mathcal{U}^{k}, x^{k} \in \mathcal{X}^{k}, u^{k} \in \mathcal{U}^{k}$$

Let ψ_t^* denote any argmin of the right hand side. Then, optimal solution is

$$g_t^{*,k}(\mathbf{m},x) := \psi_t^{*,k}(\mathbf{m})(x), \quad \mathbf{m} \in \mathcal{M}_n, x \in \mathcal{X}^k, k \in \mathcal{K}.$$

Theorem 3.1

The optimal strategy is unique, identical across sub-populations, and is linear in local state and the mean-field of the system. In particular,

$$u_t^i = \breve{L}_t^k (x_t^i - \bar{\mathbf{x}}_t^k) + \bar{L}_t^k \bar{\mathbf{x}}_t, \quad i \in \mathcal{N}^k, k \in \mathcal{K},$$

where the above gains are obtained by the solution of K + 1 Riccati equations: one for computing each \check{L}_t^k , $k \in \mathcal{K}$, and one for $\bar{L}_t := \text{vec}(\bar{L}_t^1, \dots, \bar{L}_t^K)$. Let $\check{M}_{1:T}^k$ and $\bar{M}_{1:T}$ denote the solution of the above Riccati equations and

$$\breve{\Sigma}_t^k := \frac{\sum_{i \in \mathcal{N}^k} \operatorname{var}(w_t^i - \bar{w}_t^k)}{|\mathcal{N}^k|}, \ \bar{\Sigma}_t := \operatorname{var}(\bar{\mathbf{w}}_t), \ \breve{\Xi}^k := \frac{\sum_{i \in \mathcal{N}^k} \operatorname{var}(x_1^i - \bar{x}_1^k)}{|\mathcal{N}^k|}, \ \breve{\Xi} := \operatorname{var}(\bar{\mathbf{x}}_1)$$

Then, the optimal cost is given by

$$J^* = \sum_{k \in \mathcal{K}} \operatorname{Tr}(\boldsymbol{\Xi}^k \boldsymbol{\breve{M}}_1^k) + \operatorname{Tr}(\boldsymbol{\bar{\Xi}} \boldsymbol{\bar{M}}_1) + \sum_{t=1}^{T-1} \left[\sum_{k \in \mathcal{K}} \operatorname{Tr}(\boldsymbol{\breve{\Sigma}}_t^k \boldsymbol{\breve{M}}_{t+1}^k) + \operatorname{Tr}(\boldsymbol{\bar{\Sigma}}_t \boldsymbol{\bar{M}}_{t+1}) \right].$$

Mean-field teams: main theorems

Theorem 3.1

The optimal strategy is unique, <mark>identical</mark> across sub-populations, and is linear in local state and the mean-field of the system. In particular,

$$u_t^i = \breve{L}_t^k (\boldsymbol{x}_t^i - \bar{\boldsymbol{x}}_t^k) + \bar{L}_t^k \bar{\boldsymbol{x}}_t, \quad i \in \mathcal{N}^k, k \in \mathcal{K},$$

For agent $i \in \mathcal{N}^k$ in sub-population $k \in \mathcal{K} = \{1, \ldots, K\}$,

$$u_t^i = g_t^{*,k}(\mathbf{m}_t, \mathbf{x}_t^i), \qquad u_t^i = \breve{L}_t^k(\mathbf{x}_t^i - \bar{\mathbf{x}}_t^k) + \bar{L}_t^k \bar{\mathbf{x}}_t.$$

Then, the optimal cost is given by

$$J^* = \sum_{k \in \mathcal{K}} \operatorname{Tr}(\boldsymbol{\Xi}^k \boldsymbol{\breve{M}}_1^k) + \operatorname{Tr}(\boldsymbol{\bar{\Xi}} \boldsymbol{\bar{M}}_1) + \sum_{t=1}^{T-1} \bigg[\sum_{k \in \mathcal{K}} \operatorname{Tr}(\boldsymbol{\breve{\Sigma}}_t^k \boldsymbol{\breve{M}}_{t+1}^k) + \operatorname{Tr}(\boldsymbol{\bar{\Sigma}}_t \boldsymbol{\bar{M}}_{t+1}) \bigg].$$

Controlled Markov Chain

• The solution complexity is polynomial in number of agents (rather than exponential) and linear in time (rather than exponential.)

Linear Quadratic

- No need to share anything beyond mean field.
- The solution complexity depends on the number of sub-populations, i.e., *K* but not on the number of agents in each sub-population, i.e., *N^k*.
- Each agent needs to solve only two Riccati equations (distributed computation).

Mean-field teams: generalizations

Controlled Markov Chain

Arbitrarily coupled cost

- Infinite horizon
- Noisy observation
- Major-minor
- Randomized strategies

Linear Quadratic

- Weighted mean field
- Infinite horizon
- Partial mean field sharing
- Major-minor
- Tracking problem

Controlled Markov Chain

Linear Quadratic

Within the same sub-population, each agent is allowed to have different tracking reference and weights:

$$u_t^i = \breve{L}_t^k (\mathbf{x}_t^i - \lambda^i \bar{\mathbf{x}}_t^{k,\lambda}) + \lambda^i \bar{L}_t^k \bar{\mathbf{x}}_t^\lambda + \breve{F}_t^k \mathbf{v}_t^{i,\lambda^i} + \lambda^i \bar{F}_t^k \bar{\mathbf{v}}_t^\lambda$$

• Randomized strategies

Tracking problem

Mean-field teams: generalizations

Controlled Markov Chain

- Arbitrarily coupled cost
- Infinite horizon
- Noisy observation
- Major-minor
- Randomized strategies

Linear Quadratic

- · Weighted mean field
- Infinite horizon
 - Partial mean field sharing
- Major-minor
- Tracking problem

Mean-field teams: generalizations

When mean field of only sub-populations $S \in \mathcal{K}$ are observed: $u_t^i = \breve{L}_t^k (x_t^i - z_t^k) + \overline{L}_t^k \mathbf{Z}_t$ $z_{t+1}^{k} = \begin{cases} \bar{x}_{t+1}^{k}, & k \in \mathcal{S}, \\ A_{t}^{k} z_{t}^{k} + (B_{t}^{k} \bar{L}_{t}^{k} + D_{t}^{k} + E_{t}^{k} \bar{L}_{t}) \mathbf{z}_{t}, & k \in \mathcal{S}^{c}. \end{cases}$ where The approximation error $\Delta J = \operatorname{Tr}(\tilde{X}_1 \tilde{M}_1) + \sum_{t=1}^{t-1} \operatorname{Tr}(\tilde{W}_t \tilde{M}_{t+1}),$ where $\tilde{M}_{1:T}$ is the solution of a Lyapunov equation. It is bounded as $\Delta J \in \mathcal{O}\left(\frac{T}{n}\right)$.

Mean-field teams: numerical examples

Controlled Markov Chain

Linear Quadratic

Numerical example 1: demand response

- $x_t^i \in \mathcal{X} = \{OFF, ON\}, \quad m_t = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(x_t^i = OFF)$
- Dynamics: $\mathbb{P}(x_{t+1}^{i}|x_{t}^{i}, u_{t}^{i}) =: [P(u_{t}^{i})]_{x_{t}^{i}x_{t+1}^{i}}$
- Actions: $u_t^i \in \mathcal{U} = \{FREE, OFF, ON\},$ Cost of action: $C(u_t^i)$
- Objective: ming $\mathbb{E}^{\mathbf{g}}\left[\sum_{t=1}^{\infty}\beta^{t}\left(\frac{1}{n}\sum_{i=1}^{n}C(u_{t}^{i})+D(\boldsymbol{m}_{t}\|\zeta_{t})\right)\right]$.

Reinforcement Learning with Partial History Sharing

Reinforcement learning with partial history sharing

Team

Reinforcement learning with partial history sharing

Reinforcement learning in general team

State: $x_t \in \mathcal{X}$. Observation: $y_t^i = h(x_t, u_{t-1}^1, \dots, u_{t-1}^n, w_t^{i,o})$. Control law: $u_t^i = g_t^i(l_t^i)$. Information: $l_t^i \subseteq \{y_{1:t}^1, \dots, y_{1:t}^n, u_{1:t-1}^1, \dots, u_{1:t-1}^n\}$. System cost: Given $\beta \in (0, 1)$, $J(g) = \mathbb{E}^g \left[\sum_{t=1}^{\infty} \beta^{t-1} \ell(x_t, u_t^1, \dots, u_t^n) \right]$. Suppose the system dynamics (f, h), cost structure ℓ , and probability mass functions are not completely known. **Objective:** Given $\epsilon > 0$, find strategy $\boldsymbol{g}_{\epsilon}^*$ such that $J(\boldsymbol{g}_{\epsilon}^*) \leq J^* + \epsilon$. **Definition (Partial History Sharing, Nayyer et al. 2013)** Split the information at each agent into two parts:

- Common information: $c_t = \bigcap_{i=1}^n I_t^i$ i.e. shared between all agents.
- Local information: $m_t^i = l_t^i \setminus c_t$ that is the local information of agent *i*.

Define $z_t := c_{t+1} \setminus c_t$ as common observation, hence $c_{t+1} = z_{1:t}$. Then,

PHS encompasses: delayed sharing, mean-field sharing, periodic sharing, control sharing, etc.

Given centralized MDP, there are two ways to learn the optimal solution:

- Indirect: supervised learning and dynamic program.
- Direct (Reinforcement Learning): Barto, Sutton, Watkins, Dayan, Singh, etc. (active since 80's).

Most of existing RL methods are developed for finite state-action MDPs. However, decentralized systems are **not** MDP in general.

- Indirect: supervised learning and dynamic program.
- Direct (Reinforcement Learning): Barto, Sutton, Watkins, Dayan, Singh, etc. (active since 80's).

Most of existing RL methods are developed for finite state-action MDPs. However, decentralized systems are **not** MDP in general.

The **indirect method may not be feasible** due to the incomplete information i.e. dynamics and cost may not be fully identified.

etc. (active since 80's).

Most of existing RL methods are developed for finite state-action MDPs. However, decentralized systems are **not** MDP in general.

The **indirect method may not be feasible** due to the incomplete information i.e. dynamics and cost may not be fully identified.

[Nayyer et al. 2013] identifies a dynamic program for PHS; however,

X

The state space is an infinite set.

The state space depends on the model.

There is no RL algorithm for POMDP that guarantees optimality.

Given centralized MDP, there are two ways to learn the optimal solution:

No existing approach to solve decentralized reinforcement learning.

etc: (active since ous).

Pre-learning stage

STEP 1: Common Information Approach

Define partial function $\gamma_t^i : \mathcal{M}^i \to \mathcal{U}^i$:

$$\gamma_t^i := g_t^i(z_{1:t-1}, \cdot) \quad \text{s.t.} \quad u_t^i = \gamma_t^i(m_t^i).$$

Let ψ denote the coordinator's strategy:

$$(\gamma_t^1,\ldots,\gamma_t^n)=\psi_t(z_{1:t-1}).$$

Virtual coordinator observes $z_{1:t-1}$ and prescribes $\gamma_t := (\gamma_t^1, \ldots, \gamma_t^n) \in \mathcal{G}$.

An equivalent centralized POMDP [Nayyer et al., 2013]

A dynamic program is identified to characterize the optimal strategy based on the information state π .

$$V(\pi) = \min_{\boldsymbol{\gamma}\in\mathcal{G}} \mathbb{E}[\ell(x_t, \mathbf{u}_t) + V(\pi_{t+1})|\pi_t = \pi, \boldsymbol{\gamma}_t = \boldsymbol{\gamma}].$$

Let \mathcal{R} denote the reachable set of the information state π .

STEP 2: An Approximate POMDP RL Algorithm

Definition (Incrementally Expanding Representation)

Let $\{S_N\}_{N=1}^{\infty}$ be a sequence of finite sets such that $S_1 \subsetneq S_2 \subsetneq \ldots \subsetneq S_N \subsetneq \ldots$ Let $S = \lim_{N \to \infty} S_N$ be the countable union of above finite sets. The tuple $\langle \{S_N\}_{N=1}^{\infty}, B, \tilde{f} \rangle$ is called an *Incrementally Expanding Representation*, if

Incremental Expansion: For any $\gamma \in \mathcal{G}, z \in \mathcal{Z}$, and $s \in \mathcal{S}_N$,

$$\widetilde{f}(s, \gamma, z) \in \mathcal{S}_{N+1}.$$

Consistency: For any $(\gamma_{1:t-1}, z_{1:t-1})$, let π_t and s_t be the corresponding states at time *t*. Then,

$$\pi_t = B(s_t).$$

Pre-learning stage

STEP 2: An Approximate POMDP RL Algorithm

Lemma

Every decentralized systems with PHS has at least one IER such that ${\cal S}$ and \tilde{f} do not depend on unknowns .

- Construct countable-state MDP Δ with state space S, action space G, dynamics f, and cost ℓ̃(B(s_t), γ_t) := E[ℓ(x_t, u_t¹, ..., u_tⁿ)|π_t, γ_t].
- Construct an augmented type approximation sequence {Δ_N}[∞]_{N=1} of Δ, with state space S_N, action space G, dynamics *t*, and cost *ℓ*(B(s_t), γ_t).
- Apply a finite-state RL algorithm *T* (such as TD(λ) and Q-learning) to learn optimal strategy of Δ_N. We assume *T* converges to optimal strategy of Δ_N.

Proposed decentralized RL algorithm

- (1) Given $\epsilon > 0$, choose *N* such that $\frac{2\beta^N}{1-\beta}(\ell_{max} \ell_{min}) \le \epsilon$. Then, construct Δ_N ; particularly, state space S_N and dynamics \tilde{f} .
- (2) At iteration k, ζ chooses prescriptions γ_k = (γ¹_k,...,γⁿ_k). (Agents have access to a common random generator to explore consistently). Agent *i* takes action uⁱ_k based on prescription γⁱ_k and local information mⁱ_k:

$u_k^i = \gamma_k^i(m_k^i), \forall i.$

(3) Based on taken actions, system incurs cost l_k, evolves, and generates common observation z_k that is observable to every agent. Agents consistently compute next state as follows

$$s_{k+1} = \tilde{f}(s_k, \gamma_k, z_k) \in \mathcal{S}_N.$$

- (4) *T* learns (updates) the coordinated strategy according to observed cost *ℓ_k* by performing prescriptions *γ_k* at state *s_k* and transition to state *s_{k+1}*.
- (5) $k \leftarrow k + 1$, and go to step 2 until termination.

Proposed decentralized RL algorithm

- (1) Given $\epsilon > 0$, choose *N* such that $\frac{2\beta^{N}}{1-\beta}(\ell_{max} \ell_{min}) \le \epsilon$. Then, construct Δ_{N} ; particularly, state space S_{N} and dynamics \tilde{f} .
- (2) At iteration k, ζ chooses prescriptions γ_k = (γ¹_k,..., γⁿ_k). (Agents have access to a common random generator to explore consistently). Agent i

The structure of the learned strategy:

$$u_t^i = g_t^i(\boldsymbol{s}_t, \boldsymbol{m}_t^i), \quad i \in (1, \ldots, n),$$

where s_t is the internal state that changes every time.

$$s_{k+1} = \tilde{f}(s_k, \gamma_k, z_k) \in \mathcal{S}_N.$$

(4) \mathcal{T} learns (updates) the coordinated strategy according to observed cost ℓ_k by performing prescriptions γ_k at state s_k and transition to state s_{k+1} .

(5) $k \leftarrow k + 1$, and go to step 2 until termination.

Theorem 6.3

Let J^* be the optimal performance of the original decentralized system and \tilde{J} be the performance under the learned strategy. Then,

$$\tilde{J} - J^* \leq \epsilon_N,$$

where $\epsilon_N = \frac{2\beta^{\tau_N}}{1-\beta} (\ell_{max} - \ell_{min}) \le \frac{2\beta^N}{1-\beta} (\ell_{max} - \ell_{min})$ and τ_N is a model dependent parameter that $\tau_N \ge N$.

Numerical example 2: multi Access Broadcast Channel (MABC)

- $x_t^i \in \{0, 1\}$ with independent arrival probability p^i , i = 1, 2.

-
$$I_t^i = (x_t^i, u_{1:t-1}^1, u_{1:t-1}^2).$$

- $u_t^i \le x_t^i \in \{0, 1\}.$
- In case of collision, packets remain in buffers.
- Objective: maximize the throughput.
 - State of other agent is unknown. (decentralized information)
 - Arrival probabilities are unknown. (incomplete model)

Future Work

- Game theory
- Markov chain
- Reinforcement learning: Specific teams such as mean-field teams.
- · Mean-field teams and consensus algorithms
- Various approximations in mean-field teams: Information & model.
- New model of mean-field teams
- Various applications: Smart grids, communications, economics, robotics, social networks, etc.

Thank you.

Contributions

Main contributions: Mean Field Teams

- Introduce partially exchangeable agents and mean-field teams.
- Allow agents to be coupled in dynamics and cost under mild assumptions.
- Mean field sharing is **non-classical**. (difficult problems)
- We use novel approaches to find the **global** optimal solution.
- Solution approach works for arbitrary # of agents. (not necessarily large)
- Mean field can be computed and communicated easily or by local interactions using **consensus** algorithms.
- In large sub-populations, mean-field is **predictable**. Also, mean-field teams are **robust to node failure**.
- Different generalizations.

Introduce partially exchangeable agents and mean-field teams. Salient features of mean-field teams:

 Controlled Markov chain: solution complexity is polynomial (rather than exponential) in # of agents and linear (rather than exponential) in time.

2. Linear quadratic:

- The optimal solution is linear.
- The solution complexity is **independent of** N and it depends only K.
- No need to share anything beyond mean field.
- Each agent solves only two Riccati equations (distributed computation).

3. When population is infinite, mean-field is deterministic and computable.

Main contributions: Mean Field Teams

- Introduce partially exchangeable agents and mean-field teams.
- Allow agents to be coupled in dynamics and cost under mild assumptions.
- Mean field sharing is **non-classical**. (difficult problems)
- We use novel approaches to find the **global** optimal solution.
- Solution approach works for arbitrary # of agents. (not necessarily large)
- Mean field can be computed and communicated easily or by local interactions using consensus algorithms.
- In large sub-populations, mean-field is **predictable**. Also, mean-field teams are **robust to node failure**.
- Different generalizations.

- Introduce partially exchangeable agents and mean-field teams.
- Allow agents to be coupled in dynamics and cost under mild assump-
- Arbitrarily coupled cost
- Infinite horizon
- Noisy observation
- Major-minor
- Randomized strategies
 - Different generalizations.

- Weighted mean field
- Infinite horizon
- Partial mean-field sharing
- Major-minor
- Tracking problem

Main contributions: Reinforcement Learning with PHS

- There is no existing RL in team that guarantees optimality .
- Introduce a novel decentralized RL for partial history sharing that guarantees ε-optimal solution.
- Use **common information approach** and our **proposed approach** to design the learning space.
- Introduce the notion of Incrementally Expanding Representation.
- The proposed approach is also novel in centralized POMDP.
- Develop decentralized Q-learning for two-user MABC.

- There is no existing RL in team that guarantees optimality .
- Introduce a novel decentralized RL for partial history sharing that guar-

Three features of designed learning space S_N :

- It is implementable by every agent based on common knowledge.
- It takes into account of the model and cost (not a prefixed space).
- It adapts to the exiting powerful finite state-action RL algorithms.
 - The proposed approach is also novel in centralized POMDP.
 - Develop decentralized Q-learning for two-user MABC.

Main contributions: Reinforcement Learning with PHS

- There is no existing RL in team that guarantees optimality .
- Introduce a novel decentralized RL for partial history sharing that guarantees ε-optimal solution.
- Use **common information approach** and our **proposed approach** to design the learning space.
- Introduce the notion of Incrementally Expanding Representation.
- The proposed approach is also novel in centralized POMDP.
- Develop decentralized Q-learning for two-user MABC.

Reinforcement Learning: Multi-Access Broadcast Channel

Numerical example 2: MABC

Only user 1 transmits Only user 2 transmits

Mean-field team: temperature control